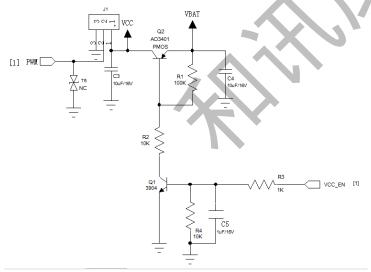


马达驱动板 PF3W (开环) 应用说明


1. 应用框图

B+,B-是马达驱动板电源正、负极VC,PWM是马达驱动板控制脚

2. 接口说明

- 1)供电:两节锂电串联 7.4V (充满 8.4~8.7V,终止充电电压与电芯相关)
- B+接锂电池的正极, B-接锂电池负极;
- 2) VC: 马达驱动板 MCU 的供电脚,供电电压为锂电池电压 7.4V,需要电子开关控制,休眠时关闭以保证低功耗,可参考如下电路:

- 3) PWM: 马达转速控制脚,由主板提供占空比可变的方波,频率 500Hz,高电平为 5V;通过占空比变化来调节马达转速;(控制板的 MCU 要用 5V LDO 供电)
- 4) 特别注意:
- a) 开 PWM 前,要先打开 VC,延时一段时间)再开 PWM,保证稳定性;
- b) 关 PWM 后,要延时一段时间(比如 3S) 再关闭 VC,保证马达 MCU 能有效处理刹车等动作;

3. 软件说明

- 1) 软件通过设置 PWM 信号的占空比控制转速 (转速非线性变化,要注意确认拿到的芯片的版本是否对应)
- 2) PWM 信号占空比调节范围 20%~95%(95%对应全开,一般为 130000RPM)

注意不同占空比对应的转速是非线性变化的,转速需要通过测量 FG 脚的信号频率来确认(频率 x60 即转速,如 FG

频率 1KHz,对应的转速为 60000RPM)

- **3)** 工作保护电压: 低于 5.5V 保护, 高于 6.5V 恢复
- 4) 要注意测试最高转速的电流,如果电流超过 26A 要适当降低最高档的控制占空比

4. 注意事项

马达全速工作电流很大(一般可以到 24A 以上),电池内阻,导线阻抗都不能忽略,考虑工作时长,发热量等问题,请注意:

- 1) 电池要考虑用大容量高倍率电池,一般建议用 21700 尺寸 4000mAH 10C 或更大容量的的双节串联锂电池;
- 2) 电池内阻要尽量小, 电池上焊接的导线要尽量粗, 减少损耗和发热量;
- 3) 马达电源线要尽量粗,以减少发热量;
- 4) 焊接马达驱动板要注意马达板上 MOS 表面与马达插针塑胶面端面之间间隙留够 3mm 以上,可以让风带走尽可能多的马达板的热量,增强马达板工作稳定性;
- 5) 马达电源线从主板引出的位置要放置固态电容(330uF/25V以上)或高频低阻的电解电容(1000uF/25V以上),主要通过电容发热情况来评估容值的合理性,主要作用是减小纹波,增加电源稳定性;
- 6) AWG 线规与电流对照表

AWG	外径		截面积	电阻 值	正常电流	最大电流	AWG	外径		截面积	电阻值	正常电流	最大电流
	公制 mm	英制 inch	mm ²	Ω/Km	(A)	(A)		公制 mm	英制 inch	mm ²	Ω/Km	(A)	(A)
0000	11.68	0.46	107.22	0.17	423.2	482.6	22	0.643	0.0253	0.3247	54.3	1.280	1.460
000	10.4	0.4096	85.01	0.21	335.5	382.3	23	0.574	0.0226	0.2588	48.5	1.022	1.165
00	9.27	0.3648	67.43	0.26	266.2	303.5	24	0511	0.0201	0.2047	89.4	0.808	0.921
0	8.25	0.3249	53.49	0.33	211.1	240.7	25	0.44	0.0179	0.1624	79.6	0.641	0.731
1	7.35	0.2893	42.41	0.42	167.4	190.9	26	0.404	0.0159	0.1281	143	0.506	0.577
2	6.54	0.2576	33.62	0.53	132.7	151.3	27	0.361	0.0142	0.1021	128	0.403	0.460
3	5.83	0.2294	36.67	0.66	105.2	120.0	28	0.32	0.0126	0.0804	227	0.318	0.362
4	5.19	0.2043	21.15	0.84	83.5	95.2	29	0.287	0.0113	0.0647	289	0.255	0.291
5	4.62	0.1819	16.77	1.06	66.2	75.5	30	0.254	0.01	0.0507	361	0.200	0.228
6	4.11	0.162	13.3	1.33	52.5	59.9	31	0.226	0.0089	0.0401	321	0.158	0.181
7	3.67	0.1443	10.55	1.68	41.6	47.5	32	0.203	0.008	0.0316	583	0.128	0.146
8	3.26	0.1285	8.37	2.11	33.0	37.7	33	0.18	0.0071	0.0255	944	0.101	0.115
9	2.91	0.1144	6.63	2.67	26.2	29.8	34	0.16	0.0063	0.0201	956	0.079	0.091
10	2.59	0.1019	5.26	2.36	20.8	23.7	35	0.142	0.0056	0.0169	1200	0.063	0.072
11	2.30	0.0907	4.17	4.24	16.5	18.8	36	0.127	0.005	0.0127	1530	0.050	0.057
12	2.05	0.0808	3.332	5.31	13.1	14.9	37	0.114	0.0045	0.0098	1377	0.041	0.046
13	1.82	0.0720	2.627	6.69	10.4	11.8	38	0.102	0.004	0.0081	2400	0.032	0.036
14	1.63	0.0641	2.075	845	8.2	9.4	39	0.089	0.0035	0.0062	2100	0.025	0.028
15	1.45	0.0571	1.646	10.6	6.5	7.4	40	0.079	0.0031	0.0049	4080	0.019	0.022
16	1.29	0.0508	1.318	13.5	5.2	5.9	41	0.071	0.0028	0.004	3685	0.016	0.018
17	1.15	0.0453	1.026	16.3	4.1	4.7	42	0.064	0.0025	0.0032	6300	0.013	0.014
18	1.02	0.0403	0.8107	21.4	3.2	3.7	43	0.056	0.0022	0.0025	5544	0.010	0.011
19	0.912	0.0359	0.5667	26.9	2.6	2.9	44	0.051	0.002	0.002	10200	0.008	0.009
20	0.813	0.0320	0.5189	33.9	2.0	2.3	45	0.046	0.0018	0.0016	9180	0.006	0.007
21	0.724	0.0285	0.4116	42.7	1.6	1.9	46	0.041	0.0016	0.0013	16300	0.005	0.006

说明: 公制外径
$$Dm=92 \times \frac{36\text{-AWG}}{39} \times 0.127$$
 (mm)
正常电流= $\frac{Di^2}{500}$ (A) $Di=1000$ 外径 inch
最大电流= $\frac{Di^2}{438.489}$ (A)